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ABSTRACT 
The interval  mapping  method is widely  used for  the  mapping of quantitative  trait loci (QTLs) in 

segregating  generations  derived from crosses  between inbred  lines. The efficiency  of detecting  and 
the  accuracy  of  mapping  multiple QTLs by  using genetic  markers are much  increased by employing 
multiple QTL models  instead  of the single QTL models  (and  no QTL models)  used in interval 
mapping.  However,  the  computational  work  involved with multiple QTL models is considerable when 
the  number of QTLs is large.  In  this  paper it is proposed  to  combine  multiple  linear  regression 
methods with conventional  interval  mapping. This is achieved by fitting one QTL at a time in a given 
interval  and simultaneously using (part of) the markers as cofactors to eliminate  the  effects of additional 
QTLs. It is  shown that  the  proposed  method  combines  the easy computation of the single QTL 
interval  mapping  method with  much  of the efficiency and accuracy of multiple QTL models. 

C ONVENTIONAL  methods  for  the  detection of 
quantitative  trait loci (QTLs)  are based on a 

comparison of single QTL models with a model as- 
suming no  QTL. For  instance in the “interval map- 
ping”  method  (LANDER and BOTSTEIN 1989)  the like- 
lihood  for  a single putative QTL is assessed at each 
location on  the genome.  However, QTLs located else- 
where on  the  genome can have an  interfering effect. 
As a  consequence, the power of detection may be 
compromised, and  the estimates of locations and ef- 
fects of QTLs may be biased (LANDER and BOTSTEIN 
1989; KNAPP 1991). Even nonexisting so-called 
“ghost” QTLs may appear  (HALEY  and KNOTT 1992; 
MARTINEZ and CURNOW  1992). Therefore, it is ob- 
vious that multiple QTLs could be mapped more 
efficiently and  more accurately by using multiple QTL 
models. KNAPP (1 99 l), HALEY and KNOTT (1 992)  and 
MARTINEZ and CURNOW  (1992)  developed  approxi- 
mate  methods  for  mapping QTLs using the informa- 
tion in the  expected values of marker  genotype means. 
JANSEN (1  992)  described  a  general  mixture  model for 
the case of multiple  QTLs.  Unfortunately, the com- 
putation involved with all these  methods is almost 
infeasible when the  number of QTLs is large. Also, 
standard  multiple  linear  regression  procedures are 
used in mapping QTLs (COWEN 1989, STAM 199 1). 
The regression method is available in many statistical 
packages but suffers  from the relative lack of inter- 
pretability in terms of genetic models. In these  stand- 
ard multiple linear  regression  procedures, the  quan- 
titative  trait is regressed on  the  markers so that all 
markers are treated  as if they are  QTLs themselves. 
The effects of QTLs will be  absorbed (partially) by 
linked markers. STAM (1991) showed that in a back- 
cross population of infinite size QTL effects are fully 
absorbed by their  flanking  markers when these are 
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used as  regressors.  Although this will rarely  be the 
case  in finite  populations (due  to  random deviations 
from  the  theoretical  cosegregation  ratio of markers), 
flanking  markers will tend  to  absorb  the effects of 
nearby QTLs. JANSEN (1992) suggested a  detection 
and mapping  approach  that is basically a  hybrid be- 
tween the interval  method and  the multiple regression 
method.  It was proposed to fit single QTL models 
(one  per  marker  interval)  and use (selected) markers 
to eliminate the effects of possible QTLs in other 
intervals. This can be achieved by using markers  as 
cofactors in the regression of phenotype on genotype. 
Again, single QTL models may be  compared with the 
model assuming no  QTL, but now markers are used 
as cofactors. In  the present  paper this hybrid  approach 
is worked out  and illustrated  for backcross popula- 
tions, but  the same ideas apply to  other types of 
population; emphasis will be on detection aspects. A 
simple simulation study with three  QTLs, two of them 
located on  the same  chromosome, is presented  to 
illustrate the potential use of marker  cofactors in the 
detection of multiple  QTLs.  A  simulated  example 
concerning  detection of 1  1 QTLs  on a  genome of 10 
chromosomes is also included. 

SOME  PRELIMINARY INVESTIGATIONS 

A  genome of two chromosomes was simulated  100 
times in a backcross of F1-individuals to  one of the 
parental lines with two markers (M) and a single QTL 
(QI) on  the first  chromosome  (MQIM/mqlm),  and 
with three  markers  and two other  QTLs (Qz and Q3) 

on  the second  chromosome (MQzMQSM/mqzmqsm). 
The markers  were  set at a  distance of 20 cM apart. 
The  QTLs were  located halfway between their flank- 
ing  markers. The environmental  contribution was 
normally distributed. The effects of the genes at  the 
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TABLE 1 

Outline of the models fitted to compare different strategies for 
detection of QTL 1 (see also Figure 1) 

QTL fitted 
Marker cofactors 

Model 1 2 3 fitted 

A Yes Yes Yes N o  
B N o  Yes Yes No 
C Yes No No No 
D No No No 
A' Yes N o  N o  
B' No No No 

TABLE 2 

Outline of the models fitted to compare different strategies for 
detection of QTL 2 (see also Figure 2) 

QTL fitted 

Model 1 2 3 fitted 
Marker cofactors 

A Yes Yes Yes No 
B Yes N o  Yes No 
C N o  Yes No No 
D No No No 
A' No Yes No 
B' No No No 

QTLs were additive; the additive deviations (half the 
differences between the homozygotes) were set to 1 
SD. In all simulations data were generated  for 200 
individuals assuming absence of interference. 

Tables  1 and 2 show the specification of the various 
models that were fitted to  the simulated data. Expres- 
sions for  the  simultaneous likelihood of the observed 
phenotypic and genotypic (marker)  data  are given by 
JANSEN (1992).  Let Y A ,  s, x, Y D ,  Y A ,  and Yf, 
denote  the maximum log-likelihoods of the  corre- 
sponding models. For  instance, YA can be  written as 
follows 

N 

Y* = 2 logP(h) 

where y is the  phenotype, h is the observed  marker 
genotype with probability P(h), g is the  complete  gen- 
otype  (markers and  QTLs) with conditional  probabil- 
ity P(glh), m(g) is the  normal  mean  and a' the normal 
variance of individuals with genotype g. In general 
m(g) = m + A + M, where A is now the additive 
component of the QTLs  and M is the  component  for 
the  marker  cofactors with two levels per marker. 

In conventional interval  mapping, the detection of 
a QTL is based on % - 9 D .  Y A - Y B  is a similar expres- 
sion,  but now the  QTLs  on  the  other chromosome 
are also accounted  for.  Figure l a  shows that ~ - 9 ~  is 
less than g A - 9 B  in almost all simulations. Thus, higher 
power for  detection of QTL 1 is achieved when taking 
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FIGURE 1 .-A comparison of strategies for  detection of  QTL 1 
(see also Table 1) .  A simulated backcross of FI  individuals with 
MQIM/mqlm  on the first chromosome and MQ2MQaM/mq2mqsm 
on the second  chromosome to the parent with a normally distrlb- 
uted trait. The effects of the QTLs were additive and set to 1 SD. 
All distances between  QTLs  and flanking markers were set to 10 
cM. Y A ,  Y B ,  L&, Y& Y A s  and  denote the maximum log- 
likelihoods of the corresponding  models  (Table 1). Differences YA- 
YB, S-YD and YA,-2& represent the contribution of  QTL 1 to the 
log-likelihood. (a) Interval mapping approach us. a multiple QTL 
approach. (b) Interval mapping approach using marker cofactors 
us. a multiple QTL approach. 

the  QTLs  on chromosome 2 into  account.  Figure l b  
shows that taking the  QTLs  on chromosome 2 into 
account by using multiple QTL models results in 
about  the same power as using the markers of chro- 
mosome 2 as cofactors. Contrary  to  Figure la, Figure 
2a  shows  now that L & - 9 D  exceeds 9 A - Y B  in  all simu- 
lations. The single QTL model (model C) now absorbs 
the simultaneous effect of QTL 2 and 3, so that S- 
YD represents  approximately the simultaneous contri- 
bution of QTLs 2 and 3, whereas 9~-9~ represents 
the  contribution of an  additional QTL in the model. 
The fact that S - Y D  exceeds YA-YB therefore indi- 
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cates the possible presence of multiple QTLs  on chro- 
mosome 2. Figure  2b shows that again YA-YB may be 
well approximated by Y A s - Y B ,  using the flanking 
markers of QTLs 1 and 3 as cofactors. 

In this example the  “saturated” multiple QTL 
model still involves only three  QTLs, which can be 
dealt with satisfactorily in terms of computational 
efforts.  However, when the  number of QTLs  to be 
fitted simultaneously increases, the computational 
complexity quickly becomes prohibitive. Though  rep- 
resenting  a simple situation, the example clearly dem- 
onstrates  the following points. First, searching  for one 
QTL  at a  time by using markers as cofactors to  absorb 
the effects of additional QTLs is (approximately) as 
powerful as searching  for QTLs by dropping  a single 
QTL from  the full multiple QTL model.  Second,  the 
comparison of (a) the difference between the full 
multiple QTL model and  one  from which a single 
QTL is dropped,  and  (b)  the difference between the 
conventional single and  no-QTL model, is indicative 
of the presence of multiple QTLs on the same chro- 
mosome. In the  next sections these ideas are  extended 
to a  general  strategy  for the detection of multiple 
QTLs. 
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A GENERAL STRATEGY  FOR THE  DETECTION 
OF  MULTIPLE QTLS 

The log-likelihoods of various models when maxi- 
mized over  unknown  parameters  provide  a basis for 
choosing the genetic model that best fits the  data:  the 
genetic model that gives rise to  the largest likelihood 
is the best fitting  one.  However, it is clear that,  for 
instance, by adding  an  extra QTL  or  an extra  marker 
cofactor to  the model, the likelihood will increase. T o  
allow for  the fact that  different  genetic models depend 
on  different  numbers of parameters, we choose the 
genetic model that leads to  the largest value of the 
log-likelihood (9) minus a penalty for  the  number of 
free  parameters (k) in the model. Equivalently, 
Akaike’s Information  Criterion  (AIC) 

AIC = - 2 ( 9 -  k), 

may be minimized (SAKAMOTO, ISHIGURO and KITA- 
GAWA 1986). If the difference between AICs for two 
models is larger  than 2, then  the  difference is consid- 
ered  to be significant (SAKAMOTO,  ISHIGURO and KI- 
TAGAWA 1986).  A single QTL model with the QTL 
located at a marker, position is equivalent to the model 
with that specific marker as cofactor, i .e. ,  that  marker 
is also considered to  represent  a  QTL. We impose no 
penalty on  the AIC  for the additional  recombination 

FIGURE 2.-A comparison of strategies for  detection of Q T L  2 
(see also Table 2). A simulated backcross of F I  individuals with 
MQIM/mqlm on the first chromosome  and MQzMQsM/mqnmqsrn 
on the  second  chromosome to the  parent. Differences YA-S, S- 
S and YA-S, represent the contribution of Q T L  2 to the log- 
likelihood, otherwise as Figure 1. 
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n1 Regress phenotype on markers: select a 

subset of markers by backward elimination 

as described below 

A, 
Interval by interval: fit a single QTL 
using all selected markers as cofactors 

A21nrerval by interval: fit a single QTL 
using all selected markers except those on 
the current chromosome as cofactors 

single QTL and select a new 
rubnet of markers by backward 

intervals 7 B31nterval by interval: regress 
phenotype on all selected 
markers in its new subser 

AICA2 < mln(AICA2) + 2, 
those intervals for which 

where the minimum is 
taken over all intervals 

which AICA, is (close 
in those intervals for 

to) a local minimum on 
che current chromosome 

FIGURE 3.-Flow diagram for interval mapping of multiple 
QTLs. 

parameter in a single QTL model. Then  the above 
single QTL model and marker  cofactor model have 
the same AIC. Our detection procedure consists of 
two stages: (1) selection of markers  located closely to 
QTLs  and (2) interval  mapping using (subsets of) the 
selected markers to absorb effects of other  QTLs. An 
example in the  next section serves to illustrate the 
procedure.  Figure 3 shows a flow diagram  for  the 
detection  procedure;  the details will now be  described 
below. 

The first stage  starts with multiple  regression of the 
quantitative  trait on all markers. By a subset selection 
method  for multiple regression (the  method of back- 
ward elimination) markers are  dropped  from  the 
model until no  further  reduction in AIC  can be 
achieved. The final model is denoted by BI. The final 
subset of markers will be used in the second stage of 
the  procedure. Models AI, A2, As, B1, B2, B3, C and 
D as used below, now refer  to  the models specified in 
Figure 3 and in the example given in the  next section. 
Models Al, A2 and As are single QTL models, models 
B,, B2 and Bs are  “no  QTL” models. Models C and D 
are  the commonly used models with and without  a 
single QTL (no  marker  cofactors used). It is the 
difference  among AICs that  matters and  not  the actual 
values themselves. Therefore, we present AICs rela- 
tive to  the AIC of the multiple regression model using 
all selected markers  (model B1). 

Selected markers  (hopefully)  indicate locations of 
QTLs  or  at least regions  where QTLs  are located. 
Important QTLs  are located on those chromosomes 
for which the  dropping of markers  from  the final 
multiple regression model results in a  large  increase 

of AIC  (model B2 is compared with model B1). 
In  the second stage (the interval  mapping  stage) 

selected markers are used as cofactors in the regres- 
sion of phenotype on genotype (JANSEN 1992).  Inter- 
val  by interval, the AICs of several models are calcu- 
lated. First, a single QTL model is fitted using all 
selected markers as cofactors  (model Al). However, 
by fitting the putative QTL, some (or all) of the 
selected markers on  the  current chromosome may 
now be redundant.  This may be  studied by dropping 
some or even all selected markers on  the  current 
chromosome  (model A1  is compared with models As 
and A2, respectively). Suppose that  for some interval 
all selected markers on  the  current chromosome may 
be  dropped without  a loss  in AIC  (model A2 fits better 
than model AI). In  that case a single QTL suffices to 
take  over the role of these  markers.  However, if the 
putative QTL may  also be  dropped (model B2 fits 
better  than model A2) without  a loss in AIC,  then no 
QTL is detected  on  the  current  chromosome. Alter- 
natively, suppose that  the  AIC of model A2 exceeds 
the  AIC of model A1 in  all intervals. This indicates 
that  a single QTL cannot  take  over  the  role of the 
markers, and  the presence of multiple QTLs  on  the 
current chromosome is indicated. Then a second se- 
lection procedure is carried  out  interval by interval. 
Starting  from  the single QTL model using all selected 
markers, which markers still  may be dropped (those 
markers previously explained  the effect of the putative 
QTL)  and which markers  cannot  be dropped (these 
markers possibly absorb  the effects of other  QTLs  on 
the  current chromosome) are studied.  Dropped  mark- 
ers will often  be  the  markers  flanking  the  interval. 
Interval by interval,  detection of the  putative QTLs 
is now carried  out by dropping  the QTL (model B3  is 
compared with model As) using for each interval its 
own subset of selected markers. 

EXAMPLE 

A  simulated backcross example will be worked out 
in the case of a  genome of 10 chromosomes and a 
quantitative  trait  that is affected by 11 QTLs spread 
over  the chromosomes  (Figure 4). The example serves 
to illustrate the behavior of our new interval  mapping 
approach  and  to  compare this approach with the  tra- 
ditional  interval  mapping  method. Data were simu- 
lated for 500 individuals. Genotypes were generated 
assuming absence of interference. The markers were 
set at a  distance of 20 cM apart;  the  QTLs were 
located halfway between  their  flanking  markers. The 
environmental  contribution was normally distributed. 
The effects of the genes  were  additive and  the additive 
deviations were set to  either 1 or -1 SD. Expressions 
for  the  simultaneous likelihood of the observed phe- 
notypic and genotypic  (marker)  data are given by 
JANSEN (1 992). 

Table 3 shows the specification of the various 
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1 I I I I 
I 

2 I I I I I 

3 I I I I I 

4 - I  I I I 
I I 

5 1 - 1  , I 1 

6 I I c l  I I 
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> I  X I  
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FIGURE 4.-A simulated  backcross of 500 individuals  with a 
genome of 10 chromosomes  and 1 1  QTLs spread over the chro- 
mosomes. The markers  were  set  at a distance of 20 cM apart. The 
QTLs were  located  halfway  between  their  flanking  markers.  Lines 
indicate chromosomes. Blocks  indicate QTL positions, the effect of 
a QTL is either 1 0 or -1 0. Marker locations  are  indicated by 
a I and +. A subset of all  markers  was selected by  backward 
elimination in multiple  linear  regression of the trait on the markers; 
selected markers are indicated by +, the other markers  by 1. Arrows 
indicate  per  marker  interval  when the left ( I ( )  or the  right (I) 
flanking  marker is dropped in the second marker  subset selection 
(see also text, Table 3 and  Figure 3). Markers are numbered I to 5 
from the left to the right on each chromosome. 

TABLE 3 

Outline of the  models fitted in the  example 

Selected marker cofactors 
used on this/other 

chrornosome(s) 

Model fitted This Other 
QTL 

A1 Yes All All 
BI No All All 
A2 Yes None A11 
B2 No None All 
A3 Yes See Figure 4 All 
B3 No See Figure 4 All 
C Yes None None 
D No None None 

models fitted. Some  results are presented in Table 4 
for chromosomes 1 ,  6,  7,  8,  9 and 10; emphasis is on 
detection aspects. Results for  other chromosomes 
were similar. A complete overview of the results would 
contain  not only AICs as given in Table 4, but also a 
monitoring of AICs and  parameter estimates during 
the whole detection process and  for  the complete 
genome. 

The total  phenotypic variance in the simulated data 
was equal to 3.76, which consisted of environmental 
variance (1.02) and genotypic  variance (2.74). The 
explained (genotypic) variance was  in the  range of 

0.00 to 0.74 when using single QTL models (conven- 
tional interval  mapping), and in the  range of 2.18 to 
2.36 when using single QTL models with marker 
cofactors. This clearly demonstrates  that  a considera- 
ble part of the genotypic (QTL) variance was absorbed 
by marker cofactors. Table 4 shows that  the AICs of 
single QTL models (conventional  interval mapping) 
were large  relative to the single QTL models with 
marker cofactors. Thus,  the  better fit of the model to 
the  data is achieved when using marker cofactors. 

The procedure indicates  correctly the presence of 
no  QTL  on chromosomes 1,2 and 3, the presence of 
.one QTL on chromosomes 4 ,  5 and 6, and  the pres- 
ence of multiple QTLs  on chromosomes 7, 8, 9 and 
10. The multiple QTLs could be well separated on 
chromosomes 7 and 8. The estimates of the QTL 
effects on chromosome 9 take values -0.06,  0.36, 
0.45,  -0.67,  -0.67 and 0.01 in the first up to the 
sixth interval  (model As), which shows a  clear  change- 
over  at  the  third  marker. No clear  separation of the 
two QTLs  on chromosome 10 could be  obtained. The 
estimates of the  QTL effects on  chromosome 10 are 
1.27,  1.20,  1.63,  1.60, 1 .11  and 0.94 in the first up 
to  the sixth  interval when using model A*, and they 
are 0.44,  0.38,  1.24,  1.22,  0.30 and 0.05 when using 
model As. This  change clearly represents  the effect of 
the  marker cofactors.  However, the selected marker 
1 was not  replaced by the single QTL in the  third 
interval. Nevertheless, the AIC for the model without 
marker 1 was close to  the AIC for  the given optimum 
model. Similar results hold for  the selected marker 4 
and  the single QTL in the  fourth interval. Thus, 
discrimination  between the various models was poor. 

The choice of a  genetic model may also be based 
on additional  considerations. For instance,  a QTL is 
indicated in the  fourth, fifth or sixth interval  on 
chromosome 7, but  the markers 4 and 5 are simulta- 
neously redundant as cofactors only when fitting  a 
QTL in the fifth  interval (model As). Therefore, only 
a QTL in the fifth interval can take  over the  role of 
these  markers. It may also be worthwhile to force  a 
marker  cofactor  to  be  included in the selected subset. 
For instance, when observing the changeover in the 
estimated QTL effects at  marker 3 of chromosome 9, 
a  marker  cofactor  for  marker 3 can be reentered  into 
the model. The estimates of the QTL effects on 
chromosome 9 now take the slightly better values 0.52 
and -0.77 in the  third  and  the  fourth interval,  re- 
spectively (model As). 

In  the conventional  interval  mapping  approach, the 
detection  and mapping of QTLs is based on models 
with a single QTL (model C) and without  a single 
QTL (model D). The AIC of the  latter model is equal 
to 390.3. A LOD threshold of about 2.4 (LANDER and 
BOTSTEIN 1989; their  Figure 4), or equivalently, an 
AIC threshold of about 2(2.4/logloe - 1)  = 9.1 is 
commonly used as a threshold for  the. detection of 
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TABLE 4 

Interval  mapping multiple QTLs:  AIC values for various models in a simulated backcross (see Figure 4 for a description of the 
backcross and see Table 3 and Figure 3 for an outline of the models A,, A*,  AS, B,, Bz, Bs,  C and D) 

Marker  interval 

Chromosome Model -1 1-2 2-3 3-4 4-5 5- 

1 A1 1.9 2.0 1.9 1.9 1.5 1.5 
(0.6) A2 2.5 2.2 1 . 1  0.0 0.0 2.2 

C 391.5 390.9 385.7 385.6 391.8 392.3 
6 AI 2.0 2.0 2.0 2.0 1.8 1.6 

(43.4) AP 28.3 2.5 -1.4 1 1 . 1  30.4 35.4 
C 385.0 377.4 374.0 377.6 388.0 389.0 

7  AI 2.0 2.0 1 .o 0.0 2.0 2.0 
(82.8) A2 60.2 60.3 79.4 61.5 54.7 57.4 

As -2.7 -3.5 0.5 -2.2 0.0 0.0 
Bs 55.9 0.0 0.0 8.9 60.2 10.9 
C 371.1 371.3 392.3 381.0 374.7 375.8 

8  AI 1.5 1.9 1.4 1 . 1  -0.7 0.6 
( 1  08.0) AP 43.6 42.6 53.8 41.0 41.3 69.4 

As -0.3 0.0 1.4 0.0 -2.5 0.6 
Bs 42.4 42.4 0.0 43.5 43.5 0.0 
C 346.5 341.7 346.9 348.4 349.3 369.3 

9 A1 1.9 1.9 1.4 1.5 2.0 2.0 
(21.9) A2 23.9 23.9 22.1 5.3 5.7 16.9 

As 1.9 0.0 -0.5 0.0 0.0 2.0 
Bs 0.0 5.3 5.3 23.9 23.9 0.0 
C 392.2 391.7 392.0 389.3 389.0 391.2 

10 A1 2.0 2.0 2.0 2.0 1.9 1.9 
(157.3) AP 106.9 79.4 5.2 7.0 87.7 125.0 

As 0.0 0.0 0.0 0.0 0.0 1.9 
Bs 6.1 6.1 55.0 55.0 2.1 0.0 
C 349.5 333.9 297.0 297.6 340.3 363.2 

A subset of markers was selected by backward elimination in multiple linear regression of the trait on the markers. Only selected markers 
(or subsets of selected markers) were used as cofactors. All  AICs are relative to the AIC for the multiple regression of the trait on the selected 
markers (model BI). AlCs for model B2 are printed between brackets below the chromosome number, the AIC for model D equals 390.3. 

QTLs. A QTL would be  indicated  then in those 
intervals  for which the AIC of model C is less than 
381.2. Following this approach, QTLs would be in- 
dicated on all chromosomes but chromosome 9.  The 
putative QTL  on chromosome 8 is most likely (but 
incorrectly) located in the second interval. 

The example clearly demonstrates  the following 
points. First, the AIC profile is much  steeper  around 
QTLs when using model A2 instead of when using 
model C (see for instance chromosome 6 in Table 4). 
Therefore,  the locations of the  QTLs can  be assessed 
more accurately when using marker  cofactors. Sec- 
ond,  the difference  for  AIC  between  model A2 and 
model B2 is often  (much)  larger  than  the  difference 
for AIC between model C and model D in  case a single 
QTL is indicated on a specific chromosome (see chro- 
mosome 6 ,  results were similar for chromosomes 4 
and 5 ) .  This difference is indicative for  the effect of 
dropping  the  QTL, so that  detection is more powerful 
when using marker cofactors. Finally, contrary  to our 
method,  conventional  interval  mapping  does  not in- 
dicate the presence of multiple QTLs  on  chromo- 
somes 8, 9 and 10. In conclusion, the example  dem- 
onstrates  that  more efficient detection and  more ac- 
curate mapping can be  achieved by the interval 

mapping  approach  proposed  here  than by conven- 
tional interval  mapping. 

DISCUSSION 

Detection of multiple QTLs is hampered by two 
main problems.  First,  though exact models for map- 
ping multiple QTLs  can  be  formulated (JANSEN 1992), 
the computational work involved is almost infeasible 
for large  numbers of QTLs.  Second, many genetic 
models have to be  compared;  thus,  problems of model 
selection arise. In  the present  paper an approach is 
developed  to  get around these problems. In this ap- 
proach only single QTL models are used, whereas 
effects of other  QTLs  are (hopefully well) eliminated 
by their  flanking  markers.  A small simulation study 
demonstrated  the usefulness of this approach  for the 
detection of multiple  QTLs. The Akaike Information 
Criterion  (AIC) is used to evaluate the goodness of 
the assumed models (SAKAMOTO, ISHIGURO and KI- 
TAGAWA 1986).  A model that minimizes the AIC, or 
models for which the AIC is close to  the minimum, 
are considered to be the most appropriate.  This  pro- 
cedure shows promise, as is suggested by the example: 
the results indicate  that  more efficient detection and 
more  accurate  mapping can be achieved by using our 
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approach  than by using the conventional single QTL 
interval  mapping  approach.  However, it should  be 
noted  that,  even when it is detected  that  a specific 
chromosome  contains  multiple QTLs, large  data sets 
may  still be  required  to unravel the  separate effects 
of closely linked QTLs. 

Conventional  interval  mapping  starts with a “no 
QTL” model and compares this model with a single 
QTL model. The test statistic shows the  improvement 
in fitting  a single QTL over  fitting no  QTL. If the 
improvement is significant, a second test may be  car- 
ried  out  and  the test statistic shows the  improvement 
in fitting two QTLs over  a single QTL,  and so on. 
However, the first test may not  be significant due,  for 
instance, to linked genes with opposite effects or  to 
unaccounted  segregation on  other  QTLs.  In conven- 
tional interval  mapping the  error of “missing an exist- 
ing QTL” is uncontrolled and may therefore be high. 
It has also been reported  that nonexisting  “ghost” 
QTLs can appear, due to  interference  between un- 
detected multiple QTLs  (HALEY  and KNOTT 1992; 
MARTINEZ and  CURNOW  1992). The interval  mapping 
method  proposed in this paper  starts with a  hypothet- 
ical “polygenic” model to  get  around such detection 
and mapping  problems  concerned with interfering 
QTLs.  This  method has like multiple regression meth- 
ods  the  advantage of controlling the  error of “missing 
an existing QTL.”  In conventional  interval  mapping 
the probability of “detection by error of a QTL some- 
where on  the  genome,  whereas  no QTL is actually 
present” is controlled.  However,  the  assumption  that 
“no  QTL is actually present” makes no sense when- 
ever a QTL is detected.  In  that case the significance 
level of the test is no  longer known. Probabilities (and 
costs) of both  error-types (“missing an existing QTL” 
or “detecting by error a QTL”) may be balanced by 
the  researcher;  he may prefer  to  choose  an AIC- 
threshold with a value other  than  the  one used here 
(=2) for  the  comparison of models. Further research 
has to be done  to study the probabilities of both  error- 
types under various circumstances (e.g., for  different 
levels  of heritability,  different  numbers  of multiple 
QTLs, linked or unlinked QTLs, linked QTLs in 
repulsion or coupling  phase,  different  population sizes 
and so on). 

The general and flexible facilities of the  mixture 
model approach  described byJANsEN (1  992) also apply 
to  the interval  mapping  method  proposed in this pa- 
per. For  instance, it is possible to analyze non-normally 
distributed  traits in addition  to normally distributed 
traits, to take  experimental design factors into ac- 

count,  or  to carry out a  (combined) analysis of differ- 
ent population types. Furthermore,  the interval map- 
ping  method can readily be  programmed in statistical 
computer packages that have facilities for generalized 
linear models. The observed  quantitative  trait and  the 
observed  marker  genotypes  should be specified by the 
user and  standard  output may then  be  produced. But 
a  general  procedure would make it also possible to 
specify the type of distribution  for the  trait or  to 
include the experimental  design.  More  advanced users 
may also be  able to leave the  beaten  track and may 
try to fit alternative models. For instance, specific 
markers  that  were  dropped  during  the process may 
be added again to  the model. Alternatively, specific 
markers may  now be  excluded. For instance, selected 
markers  that  are located on chromosomes  for which 
no QTL is detected may be dropped. The advanced 
user may also want to fit multiple QTL models, for 
instance two or  three  QTLs simultaneously on  one 
chromosome, while taking  into  account  additional 
QTLs  on  other chromosomes by marker cofactors. 
This is possibly the most accurate, efficient and still 
feasible way to unravel the  separate effects of closely 
linked QTLs. 

The author would like to thank P. STAM for his helpful sugges- 
tions and critical reading of the manuscript. 
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